9/10y-1=19/20y+4

Simple and best practice solution for 9/10y-1=19/20y+4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 9/10y-1=19/20y+4 equation:



9/10y-1=19/20y+4
We move all terms to the left:
9/10y-1-(19/20y+4)=0
Domain of the equation: 10y!=0
y!=0/10
y!=0
y∈R
Domain of the equation: 20y+4)!=0
y∈R
We get rid of parentheses
9/10y-19/20y-4-1=0
We calculate fractions
180y/200y^2+(-190y)/200y^2-4-1=0
We add all the numbers together, and all the variables
180y/200y^2+(-190y)/200y^2-5=0
We multiply all the terms by the denominator
180y+(-190y)-5*200y^2=0
Wy multiply elements
-1000y^2+180y+(-190y)=0
We get rid of parentheses
-1000y^2+180y-190y=0
We add all the numbers together, and all the variables
-1000y^2-10y=0
a = -1000; b = -10; c = 0;
Δ = b2-4ac
Δ = -102-4·(-1000)·0
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{100}=10$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-10}{2*-1000}=\frac{0}{-2000} =0 $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+10}{2*-1000}=\frac{20}{-2000} =-1/100 $

See similar equations:

| 4y-2(y-3)=20 | | (4/7)+x=4 | | 517÷2=n | | 100-n=61 | | A6x-2=B=4x+48 | | 4/7+x=4 | | n+61=100 | | -35+x=55 | | -31+c=-13 | | -35+x=43 | | 13p=2 | | 5(2x-2)+6(x+7)=7(x+6)-(x+4) | | -62+x=-11 | | -66+x=-52 | | 25+c=-99 | | 25+x=-19 | | 10f+5=5(-+-) | | 76+x=64 | | 4x+4x=4x+6 | | 29+x=-6 | | 26+x=-33 | | 221x=25^10 | | 10=-8+j | | (9x-6)=7x-10 | | 5/7*n=-30 | | 6(z-1)=4 | | x-25=82 | | 3=-20+v | | 2x^2=6x+10 | | x-32=-51 | | x-33=-24 | | 15-5x=49 |

Equations solver categories