8y+4(3+y)=3(y-7)10y

Simple and best practice solution for 8y+4(3+y)=3(y-7)10y equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8y+4(3+y)=3(y-7)10y equation:



8y+4(3+y)=3(y-7)10y
We move all terms to the left:
8y+4(3+y)-(3(y-7)10y)=0
We add all the numbers together, and all the variables
8y+4(y+3)-(3(y-7)10y)=0
We multiply parentheses
8y+4y-(3(y-7)10y)+12=0
We calculate terms in parentheses: -(3(y-7)10y), so:
3(y-7)10y
We multiply parentheses
30y^2-210y
Back to the equation:
-(30y^2-210y)
We add all the numbers together, and all the variables
12y-(30y^2-210y)+12=0
We get rid of parentheses
-30y^2+12y+210y+12=0
We add all the numbers together, and all the variables
-30y^2+222y+12=0
a = -30; b = 222; c = +12;
Δ = b2-4ac
Δ = 2222-4·(-30)·12
Δ = 50724
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{50724}=\sqrt{36*1409}=\sqrt{36}*\sqrt{1409}=6\sqrt{1409}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(222)-6\sqrt{1409}}{2*-30}=\frac{-222-6\sqrt{1409}}{-60} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(222)+6\sqrt{1409}}{2*-30}=\frac{-222+6\sqrt{1409}}{-60} $

See similar equations:

| 2u-8+4(2u+2)=-5(u+2) | | v=v+3 | | 13=r−-6 | | 180=(3z+4)+(8z-28) | | q/3+6=9 | | 3y=y/4+8 | | z-44-z-50=42 | | x-4(9)=27 | | 3(v-5)+2v=70 | | 0.6(1-x)÷0.2(1x-5)=10 | | 4x-20-6x-35=19 | | x+13=5(4x-5) | | 2b+1=-8 | | -f+10=11 | | 5(6y–2)=50 | | 7-(4t)=4t-14-2t | | z-44-z-50-42=180 | | 3(u-2)=8u+4-3(-3u-2) | | 8.5=2.5e+1 | | 0.07x=56 | | 7-(4x-8)=1-5x | | -4(n-6)=1/ | | 2c+5=-35 | | 9(8x-5)+13=12x-5 | | 2=-2k+-6 | | 3(u-2)=8u+4-3)-3u-2) | | 65-125=x | | 3+3t=9.87 | | 5m+2m=40 | | 7x-27=2 | | 35=5+5d | | 2=–2k+–6 |

Equations solver categories