If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2=20
We move all terms to the left:
8x^2-(20)=0
a = 8; b = 0; c = -20;
Δ = b2-4ac
Δ = 02-4·8·(-20)
Δ = 640
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{640}=\sqrt{64*10}=\sqrt{64}*\sqrt{10}=8\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{10}}{2*8}=\frac{0-8\sqrt{10}}{16} =-\frac{8\sqrt{10}}{16} =-\frac{\sqrt{10}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{10}}{2*8}=\frac{0+8\sqrt{10}}{16} =\frac{8\sqrt{10}}{16} =\frac{\sqrt{10}}{2} $
| 73(x–1)+1=3(x+1) | | 21+7x= | | 120-4.5x=45+.5 | | 5x+11=5x+5 | | Y-4=1/3(x-4) | | 1b/6=38 | | 12^n=144 | | 5x+11=11x+11 | | 5(2x+3=45) | | 16x+2=36x-8 | | 0.35+.03m=0.45+.02m | | 5x+11=11x+5 | | –2u=–14 | | -11.1=8.1+u/6 | | 3^x+4=27^x-7 | | 6x^2-15x+2=2^2+10x-4 | | 1/9=a/9 | | S;7s=42 | | 3/4(6x+10)(13x+35)=160 | | 5k^2-k-47=0 | | 7(2m-1)-3=12m+6 | | M;8+m=10 | | 3x+2=7x-18= | | -4x+1=-3x-2 | | 6=2/7(2x=28) | | b+8/8=7/8 | | 5=2k-5 | | 2x-9=13.6 | | 4x+3-6x=3-2x | | 15x+91=7x-40 | | 6=2/7(2x=26) | | 5=1+1w |