If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2-50=0
a = 8; b = 0; c = -50;
Δ = b2-4ac
Δ = 02-4·8·(-50)
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-40}{2*8}=\frac{-40}{16} =-2+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+40}{2*8}=\frac{40}{16} =2+1/2 $
| 4b+28=48 | | 12+r=27 | | -5(1/2)-y=-8 | | -3=b+(-2) | | 2•-7-5x=26 | | -5(1)-y=-8 | | 2p+1/2=20 | | 8x+35=60 | | -1=v+(-9) | | 3x+13/2=x+5 | | 3=8+n | | (1/x+1)+(1/X+2)=(3/x+1) | | 2(p+4)=p-3 | | 7x-14=x-56 | | 1/x+1+1/X+2=3/x+10 | | w2-3w-4=0 | | 2x^2+3(4-x)^2=7x(4-x) | | 3^2+12x-18=22-7x | | 4r-9=r^2 | | 0,4x+0,5x-9=0 | | -x2+3x-2=-6 | | x2−7x=0 | | (9-u)(5u-6)=0 | | 4.5/12=x/26 | | -4(4t^2-21t-25)=0 | | 1/x+1+1/X+2=2/x+10 | | (3/5)=(x/3) | | 7.50+(1.35n)=12.90 | | x/10+3=9 | | (9-6)/2=p-4 | | h=2h-1 | | 3x^2+4x=x^2 |