If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2-320=0
a = 8; b = 0; c = -320;
Δ = b2-4ac
Δ = 02-4·8·(-320)
Δ = 10240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{10240}=\sqrt{1024*10}=\sqrt{1024}*\sqrt{10}=32\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-32\sqrt{10}}{2*8}=\frac{0-32\sqrt{10}}{16} =-\frac{32\sqrt{10}}{16} =-2\sqrt{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+32\sqrt{10}}{2*8}=\frac{0+32\sqrt{10}}{16} =\frac{32\sqrt{10}}{16} =2\sqrt{10} $
| m+11=3m+1 | | 1.4r+2=16 | | x^2+17x=256 | | 8w+10=5w+25 | | 1x+2x+7=3x–7 | | 3(n+77=+21 | | 6y^2–2y+2=0 | | 3x+3=2(x-2) | | 8b-30=2b+30+20 | | 7+17+c=90 | | 50y+1,700=150y+600 | | 8+53+f=90 | | 5÷n=40 | | x2-12x=-28 | | 2x+2x+8.5=124.5 | | 3(n-3)+4=2n+8 | | 8^5x=64 | | L=5xW=2 | | 14x+4+55=129 | | 4(2n+1)=7(6n+4)+9 | | 163=58-y | | 3x+12+2x+18=180° | | (200)(4.18)(x-30)=-(20)(0.233)(x-350) | | X=36x-7-2x | | 12+8w=–52 | | 3.5x-10.8=3.2 | | 24=3.14+a | | 95.50+1n=116.50 | | 3x-7=11+9x | | 7.8x-13.7=1.9 | | 3x-7=11+9× | | –2323x=–12 |