If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2+2x=40
We move all terms to the left:
8x^2+2x-(40)=0
a = 8; b = 2; c = -40;
Δ = b2-4ac
Δ = 22-4·8·(-40)
Δ = 1284
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1284}=\sqrt{4*321}=\sqrt{4}*\sqrt{321}=2\sqrt{321}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{321}}{2*8}=\frac{-2-2\sqrt{321}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{321}}{2*8}=\frac{-2+2\sqrt{321}}{16} $
| 30.8+x=41.2 | | s=1−13 | | 3(3-b)-29=21b-4(5+6b) | | y+4.75=9.50 | | x+0.50=4.75 | | 63-(3x+6)=3(x+5)+x | | m+2/9=8 | | y+0.8=3.7 | | j=-3(5) | | 13.25=t-24.25 | | 9r+8=23r+15 | | 5x+9=3+2x. | | 9p+5=3p-2 | | 16.0=11.8+l | | 4x+3=2x+9. | | 16.0=11.8+i | | 5.7s+0.09=12 | | -7(4x+7)=3+4(-6x–4) | | 4x=2+11 | | 5(x+4)-(x-7)=-11 | | 12.7=10.9+x | | 6x+2=13-5x | | −5x+4x=−5 | | 3x-4x+1=-1 | | 9p-5=8p-1 | | 146.9=10.4x+117.52 | | 24.8y=31.4 | | -4x/9=16/27 | | 7x+6=2x+103 | | -1+11x-181=109 | | (x+11.3)/11.3=13/10.4 | | -0.75p-2=0,25p |