If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2+15x-7=0
a = 8; b = 15; c = -7;
Δ = b2-4ac
Δ = 152-4·8·(-7)
Δ = 449
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-\sqrt{449}}{2*8}=\frac{-15-\sqrt{449}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+\sqrt{449}}{2*8}=\frac{-15+\sqrt{449}}{16} $
| 8x2+15x7=0 | | 2*x-8=12 | | 8x2+9x-7=0 | | 3*x+3=12 | | t+2t+4t=84 | | 6*x+3=21 | | 3*x-1=14 | | 8x-1=x+7 | | -2=-12-5x | | 7x-5=5x+9.X= | | 3x+6=12-1x | | 6x-5=-41+4x | | 9x-30=6-3x | | 2x-3=-1+x | | 3x+2x+x=7x+12 | | x+1,8=5,4 | | 49x2+28x-4=-8 | | 4x-3=15-2 | | 3y2-2y-1=0 | | 5(2y+2)-2(2y+3)=-2 | | 5+2y+2y=13 | | 10x+2=5x+47 | | 2/3=x33/5 | | 7(x+3)+8(5x+4)=6 | | 3x+60=6x-9 | | 2z+12=7z-36 | | 3(2z+4)=-2(3z+6) | | 8w+9=6w+7 | | 8y+1=6y+1 | | 5y+11=7y-29 | | 3g(g-8)=36 | | 2x+11=5x+41 |