If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x-5(x+3)=12x-7/8x+5-20
We move all terms to the left:
8x-5(x+3)-(12x-7/8x+5-20)=0
Domain of the equation: 8x+5-20)!=0We add all the numbers together, and all the variables
We move all terms containing x to the left, all other terms to the right
8x-20)!=-5
x∈R
8x-5(x+3)-(12x-7/8x-15)=0
We multiply parentheses
8x-5x-(12x-7/8x-15)-15=0
We get rid of parentheses
8x-5x-12x+7/8x+15-15=0
We multiply all the terms by the denominator
8x*8x-5x*8x-12x*8x+15*8x-15*8x+7=0
Wy multiply elements
64x^2-40x^2-96x^2+120x-120x+7=0
We add all the numbers together, and all the variables
-72x^2+7=0
a = -72; b = 0; c = +7;
Δ = b2-4ac
Δ = 02-4·(-72)·7
Δ = 2016
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2016}=\sqrt{144*14}=\sqrt{144}*\sqrt{14}=12\sqrt{14}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{14}}{2*-72}=\frac{0-12\sqrt{14}}{-144} =-\frac{12\sqrt{14}}{-144} =-\frac{\sqrt{14}}{-12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{14}}{2*-72}=\frac{0+12\sqrt{14}}{-144} =\frac{12\sqrt{14}}{-144} =\frac{\sqrt{14}}{-12} $
| -3x+60=5x+2 | | d+21=91 | | (-1/2x)=-x+3 | | -c=-72 | | 9=4+4/v+12 | | 8t+4.9t^2+120=0 | | -14x-5=10x-10x-45 | | 0.08v+0.01=0.07v-0.2 | | 624=-26u | | -210=v+-873 | | -2w=7.2 | | 8x-5(x+3)=12x-7/2x+5-20 | | 4r-2+r-5=3r-1-4r | | 8x-5(x+3)=12x-7/3x+5-20 | | 8-5(w+9)=-4-6(4+2w) | | 8x-5(x+3)=12x-7/4x+5-20 | | v-935=37 | | d+55=-22 | | 3t-2/3+2t+3/2=t7/6 | | -20+16x=700 | | t+19=88 | | 11x=5+2x+4x | | 22x+14=5(2x-4) | | q-3.12=17.02 | | z-74=315 | | 9+5m=1+9m | | | | 196f=14 | | 8x-5(x+3)=12x-34/4x+5-20 | | | | | | |