If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x-5(x+3)=12x-7/3x+5-20
We move all terms to the left:
8x-5(x+3)-(12x-7/3x+5-20)=0
Domain of the equation: 3x+5-20)!=0We add all the numbers together, and all the variables
We move all terms containing x to the left, all other terms to the right
3x-20)!=-5
x∈R
8x-5(x+3)-(12x-7/3x-15)=0
We multiply parentheses
8x-5x-(12x-7/3x-15)-15=0
We get rid of parentheses
8x-5x-12x+7/3x+15-15=0
We multiply all the terms by the denominator
8x*3x-5x*3x-12x*3x+15*3x-15*3x+7=0
Wy multiply elements
24x^2-15x^2-36x^2+45x-45x+7=0
We add all the numbers together, and all the variables
-27x^2+7=0
a = -27; b = 0; c = +7;
Δ = b2-4ac
Δ = 02-4·(-27)·7
Δ = 756
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{756}=\sqrt{36*21}=\sqrt{36}*\sqrt{21}=6\sqrt{21}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{21}}{2*-27}=\frac{0-6\sqrt{21}}{-54} =-\frac{6\sqrt{21}}{-54} =-\frac{\sqrt{21}}{-9} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{21}}{2*-27}=\frac{0+6\sqrt{21}}{-54} =\frac{6\sqrt{21}}{-54} =\frac{\sqrt{21}}{-9} $
| 8-5(w+9)=-4-6(4+2w) | | 8x-5(x+3)=12x-7/4x+5-20 | | v-935=37 | | d+55=-22 | | 3t-2/3+2t+3/2=t7/6 | | -20+16x=700 | | t+19=88 | | 11x=5+2x+4x | | 22x+14=5(2x-4) | | q-3.12=17.02 | | z-74=315 | | 9+5m=1+9m | | | | 196f=14 | | 8x-5(x+3)=12x-34/4x+5-20 | | | | | | | | | | | | | | 15e=15 | | 12m=552 | | 3b=120 | | 3x=-143 | | c-68=28 | | a/8=3a/4 | | -c-6=-12+c | | Y+2=6y-3 | | 5x+3x=155 | | 8x-5(x+3)=12x-1/2x+5-20 | | 5(2x+1)-12=23 |