If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x-5(x+3)=12x-1/2x+5-20
We move all terms to the left:
8x-5(x+3)-(12x-1/2x+5-20)=0
Domain of the equation: 2x+5-20)!=0We add all the numbers together, and all the variables
We move all terms containing x to the left, all other terms to the right
2x-20)!=-5
x∈R
8x-5(x+3)-(12x-1/2x-15)=0
We multiply parentheses
8x-5x-(12x-1/2x-15)-15=0
We get rid of parentheses
8x-5x-12x+1/2x+15-15=0
We multiply all the terms by the denominator
8x*2x-5x*2x-12x*2x+15*2x-15*2x+1=0
Wy multiply elements
16x^2-10x^2-24x^2+30x-30x+1=0
We add all the numbers together, and all the variables
-18x^2+1=0
a = -18; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-18)·1
Δ = 72
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{72}=\sqrt{36*2}=\sqrt{36}*\sqrt{2}=6\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{2}}{2*-18}=\frac{0-6\sqrt{2}}{-36} =-\frac{6\sqrt{2}}{-36} =-\frac{\sqrt{2}}{-6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{2}}{2*-18}=\frac{0+6\sqrt{2}}{-36} =\frac{6\sqrt{2}}{-36} =\frac{\sqrt{2}}{-6} $
| 5(2x+1)-12=23 | | 8x-5(x+3)=12x-2x+5-20 | | 64=r+11 | | 8x-5(x+3)=12x-x+5-20 | | 8y-8=15+2 | | 43=r-12 | | 4+5p=6p+6 | | 4(5x+4)+3(3x+2)+4=29x+26 | | 2x3x=32 | | 4(2t-4)+3t=32t | | 3y+4=2y+10 | | -29=z+58 | | 4x+9=-1+2x | | 14.4x-7.6=28.4 | | 114=11x+4 | | 8x-5(x+3)=12x-9x+5-20 | | -2p-3/2p=7 | | 4x+3÷3/15=1/3 | | y/5+5=-11 | | c+87=84 | | -8a=96 | | p-39=23 | | (5v-5)°-(4v-4)°=180 | | z+43=62 | | X-4(-2x-11)=16x+51 | | 10-1d=-34-d | | −1/3n=−60 | | −13n=−60 | | 2x-9+4x+2=5x+13 | | 10-15=100m | | -2x+9=5x-12 | | (5/x+1)-(3/x)=9 |