8x-1/4x=23-4x

Simple and best practice solution for 8x-1/4x=23-4x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8x-1/4x=23-4x equation:



8x-1/4x=23-4x
We move all terms to the left:
8x-1/4x-(23-4x)=0
Domain of the equation: 4x!=0
x!=0/4
x!=0
x∈R
We add all the numbers together, and all the variables
8x-1/4x-(-4x+23)=0
We get rid of parentheses
8x-1/4x+4x-23=0
We multiply all the terms by the denominator
8x*4x+4x*4x-23*4x-1=0
Wy multiply elements
32x^2+16x^2-92x-1=0
We add all the numbers together, and all the variables
48x^2-92x-1=0
a = 48; b = -92; c = -1;
Δ = b2-4ac
Δ = -922-4·48·(-1)
Δ = 8656
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8656}=\sqrt{16*541}=\sqrt{16}*\sqrt{541}=4\sqrt{541}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-92)-4\sqrt{541}}{2*48}=\frac{92-4\sqrt{541}}{96} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-92)+4\sqrt{541}}{2*48}=\frac{92+4\sqrt{541}}{96} $

See similar equations:

| 10x-18=108 | | 26(9x)=180 | | 8e+8+9e+-3=90 | | -4w+38=9(w-3) | | -2x+5(x+3)=-6 | | 1/2x+3=2/3x+7 | | s/4=176 | | 15p=540 | | c/7=84 | | 12s=16.85 | | 16x+5=2x-23 | | 6/11=x/16 | | 3d^2-1.d=-5 | | 24-6h=4h+7 | | 2x-6+3x=2(-2x+2)+18 | | 4m+5=53-2m | | -22-11a=6(2a+4) | | (3d)10=3^20 | | 2/c=4/c+6 | | 21-2x=8x+8 | | 2n-6=-8(-6+2n) | | -u+90=163 | | -x+174=124 | | 160=111-x | | 324=72t | | X=2y+165 | | 6.74x=0.5392 | | 31=w/5+15 | | 5p-7=22 | | 3/4x-1=1/2x+3 | | -2+0.75j+0.5j=2j | | a/10-2.1=5.3 |

Equations solver categories