If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8t^2+6t+1=0
a = 8; b = 6; c = +1;
Δ = b2-4ac
Δ = 62-4·8·1
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2}{2*8}=\frac{-8}{16} =-1/2 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2}{2*8}=\frac{-4}{16} =-1/4 $
| -4(w+4)+5w=w | | x+8+9x=74-6 | | 8/15=x/21 | | 12=3k+6 | | 1.5-(7÷8)x=2.6x+(1÷5 | | (4x+6)=102+x | | 1.5-(7÷8)x=2.6x+(1÷5) | | y=3+14+24 | | 36-4w=2w | | 2x*2=2x | | X2+4x-2=0 | | (8+5i)-(2+3i)=0 | | 3.x+2x-x+7=4x-x+2 | | 10y=y+70 | | m+11/2=-1 | | .7y+3y+6y=8y+12+12 | | 1.x+3x-x=2x+1 | | 7=-p–6p | | 125=72t+0.5*10t | | 2x^2+x+113=0 | | 3x^2+15=-21 | | 2×+3y+5ž=103×+7y+4ž=-3×+2y+2ž=3 | | F(x)=2^3x-8 | | 16=u6+16 | | 11=12+p2 | | 4x2+8x+3=0 | | 7x+13=-41 | | √y-6=0 | | 40=-10(s+5)+20 | | 64/y=4 | | 25=-3r+7 | | -9=-8b–b |