If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+8x+3=0
a = 4; b = 8; c = +3;
Δ = b2-4ac
Δ = 82-4·4·3
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-4}{2*4}=\frac{-12}{8} =-1+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+4}{2*4}=\frac{-4}{8} =-1/2 $
| 7x+13=-41 | | √y-6=0 | | 40=-10(s+5)+20 | | 64/y=4 | | 25=-3r+7 | | -9=-8b–b | | -17=10y+3 | | -7(c+4)=-84 | | −15x2=6x | | -7d+14=-21 | | 4x-15=5/ | | x/5-2x/4=3+7x/10 | | 8c–13=-37 | | (+7)=6x+8 | | G(x)=2.25x;100 | | −18x2=8x | | 40=-10(a+7) | | 0=-(t^2-14t-2) | | −18x^2=8x | | |2x+3|=3x+5 | | 6(2y-2)-12y=-12 | | 20+2t=42 | | 8x2+14x=0 | | x2+2x+1=9 | | (4x+2)^2=16 | | 1/6(2x+36)=1/6x-12 | | (3w+2)(3-w)=0 | | 2(5-d)=24d | | 1) 7n+3=3n+27 | | 8m+9-4=2(m-3) | | 16x^2+16x+4=16 | | 16^2+16x+4=16 |