If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8q^2=32
We move all terms to the left:
8q^2-(32)=0
a = 8; b = 0; c = -32;
Δ = b2-4ac
Δ = 02-4·8·(-32)
Δ = 1024
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1024}=32$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-32}{2*8}=\frac{-32}{16} =-2 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+32}{2*8}=\frac{32}{16} =2 $
| 9u=8u+1 | | 7+4(x+5)=31 | | 4y−25=2y+3 | | -8x-22(x-38)=14x | | 0.5(6x–3)=3(1+x) | | m2-4=0 | | 3=1+p/5 | | -2s+6=3s-14 | | -12x+12=0 | | 2w2+54=62 | | 5+x/6=4 | | 2x-3+5x-2+7x-11=180 | | −3(x−6)=x−2(2x+8) | | m/6m=42 | | 40(x-27)=7x+9 | | x+11=145 | | 21=3v-3 | | 9+8n=1 | | 3(7b-1)=-129 | | 5x-7+3x=1+2+3x+5 | | 32s2-8=0 | | 8.1+3.8h-5.6h=-7.3 | | 181+25x=-19(x+9) | | –2g=9+g | | 3(x+2)^2+2=-48 | | 2a−6=5a+15 | | u−3=6 | | m2+17=53 | | -11x+19=-13-13x | | m-555=309 | | 2^(x)*8^(-x)=4^(x) | | v+5.1=7.86= |