If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8d+12=d2
We move all terms to the left:
8d+12-(d2)=0
We add all the numbers together, and all the variables
-1d^2+8d+12=0
a = -1; b = 8; c = +12;
Δ = b2-4ac
Δ = 82-4·(-1)·12
Δ = 112
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{112}=\sqrt{16*7}=\sqrt{16}*\sqrt{7}=4\sqrt{7}$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-4\sqrt{7}}{2*-1}=\frac{-8-4\sqrt{7}}{-2} $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+4\sqrt{7}}{2*-1}=\frac{-8+4\sqrt{7}}{-2} $
| x+0.08x=45.60 | | s/13-478=499 | | k+84/25=6 | | 5/18-4y=2 | | 7(d-976)=-483 | | 3n+6=–15 | | w+100/16=16 | | v/5-2=21 | | m+10/4=6 | | n/3+11=19 | | -55=5(b-93) | | 17=3g+9-8 | | 3x+5x+1=2(x+4) | | -38=7+5z | | 25=-15+8u | | 27=9(k-96) | | 233-64=x | | z/7+56=65 | | 4x+43=32 | | b+23/9=3 | | 98=7(u+1) | | (Q+7)(q+4)=0 | | d+8/4=8 | | d-100/1=0 | | S(s-6)=0 | | p+17/6=6 | | 10(n-89)=40 | | 5(w-97=-30 | | -(d+49)=20 | | -7(v+54)=63 | | n-65/6=3 | | -8=-8(y+9) |