If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8=-18+(3/8)(16-40m)
We move all terms to the left:
8-(-18+(3/8)(16-40m))=0
Domain of the equation: 8)(16-40m))!=0We add all the numbers together, and all the variables
m∈R
-(-18+(+3/8)(-40m+16))+8=0
We multiply parentheses ..
-(-18+(-120m^2+3/8*16))+8=0
We multiply all the terms by the denominator
-(-18+(-120m^2+3+8*8*16))=0
We calculate terms in parentheses: -(-18+(-120m^2+3+8*8*16)), so:We get rid of parentheses
-18+(-120m^2+3+8*8*16)
determiningTheFunctionDomain (-120m^2+3+8*8*16)-18
We get rid of parentheses
-120m^2+3-18+8*8*16
We add all the numbers together, and all the variables
-120m^2+1009
Back to the equation:
-(-120m^2+1009)
120m^2-1009=0
a = 120; b = 0; c = -1009;
Δ = b2-4ac
Δ = 02-4·120·(-1009)
Δ = 484320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{484320}=\sqrt{16*30270}=\sqrt{16}*\sqrt{30270}=4\sqrt{30270}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{30270}}{2*120}=\frac{0-4\sqrt{30270}}{240} =-\frac{4\sqrt{30270}}{240} =-\frac{\sqrt{30270}}{60} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{30270}}{2*120}=\frac{0+4\sqrt{30270}}{240} =\frac{4\sqrt{30270}}{240} =\frac{\sqrt{30270}}{60} $
| 6+y/3=10 | | x1+x2=2x1x2=-15 | | 4r-12=0 | | 4x-5-8x+7=18 | | 4s2-18s=0 | | 31+3x(x-71)=180 | | (13x+19)=90 | | h−1=7.2 | | (13x+19)=180 | | 3a+20=5a-10 | | 10n2+-40=0 | | 31+x-71+3x=180 | | (14x+13)=90 | | X-10+2x-67+1/2x+5=180 | | (14x+13)=180 | | 0.8d+1.3d-7.4=20 | | x2+6x+-1=0 | | 3x=x-71+31 | | 3x+x-71+31=90 | | 25+q-5=59 | | -(-x-8)-5=3(x+1) | | 3(2x+5)=6x+12 | | 4b=18.8 | | 3(2x+5)=6x+2 | | 3(2x+5)=6x+0 | | 4x+10=9x+30 | | 30=2(2w-3)+2w | | 5(x-11)=30x | | -7(x+4)=9x+36 | | 5.4=3v | | |t-8|+4=11 | | 3x+31+x-71=180 |