If it's not what You are looking for type in the equation solver your own equation and let us solve it.
81a^2-63a+10=0
a = 81; b = -63; c = +10;
Δ = b2-4ac
Δ = -632-4·81·10
Δ = 729
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{729}=27$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-63)-27}{2*81}=\frac{36}{162} =2/9 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-63)+27}{2*81}=\frac{90}{162} =5/9 $
| 180=70+3x+2+x | | 6p-p-3p=8 | | 36x2+72x+35=0 | | 9x-18=6x+12 | | -(b-1)=-1 | | 4x2-4x-35=0 | | 20y-19y=-18 | | 14c+52=-158 | | 2c=0.6 | | 11x+2=158 | | 25x2-10x-48=0 | | 3(d-11)=18 | | -9s+-5s+-4s=18 | | 16x2+24x+5=0 | | (44/143)/x=x | | x/5=105-x | | 16x2-64x+63=0 | | 7j-5j+4=20 | | ?x3.2=6.8 | | 5y-2=y+1 | | -11m+13m+-3m-4m=10 | | -6y+6=42 | | 64x2+16x-15=0 | | 3y+11=26 | | 81x2+54x+8=0 | | 12a-3a-7a-2a+4a=12 | | 18=3(n10) | | 1/4x=9x | | 8b-7b-1=14 | | 4x=23-5 | | y-72=0 | | 2(j-2)=8 |