80=Ax2

Simple and best practice solution for 80=Ax2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 80=Ax2 equation:



80=A2
We move all terms to the left:
80-(A2)=0
We add all the numbers together, and all the variables
-1A^2+80=0
a = -1; b = 0; c = +80;
Δ = b2-4ac
Δ = 02-4·(-1)·80
Δ = 320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$A_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$A_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{320}=\sqrt{64*5}=\sqrt{64}*\sqrt{5}=8\sqrt{5}$
$A_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{5}}{2*-1}=\frac{0-8\sqrt{5}}{-2} =-\frac{8\sqrt{5}}{-2} =-\frac{4\sqrt{5}}{-1} $
$A_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{5}}{2*-1}=\frac{0+8\sqrt{5}}{-2} =\frac{8\sqrt{5}}{-2} =\frac{4\sqrt{5}}{-1} $

See similar equations:

| 0.7x(1-x)=0.8 | | -18=-3(k+8) | | 3x–(x+4)=2(–2x–5)+6x | | 7j+4j+3+8=20 | | y=59-13 | | 4r+2=r+ | | 4a−2+6a=16 | | 22–4z=–26 | | -21+z=83 | | 3•y=66 | | 90+(x+17)+x=180 | | 5x+78+12x+34=180 | | y=37-13 | | 4d+3d+7=84 | | 22−–4z=–26 | | -4(b-10)=20 | | –3=v+–8 | | 9x−5=2x+9 | | 4(r+1)=28 | | 4a−2a+6a=16 | | 9x-25=28 | | y=29-13 | | X+16(3)=d | | -5x-12+6+2x=12* | | 7y-35=-7(y-1) | | 9x−5=2x+9* | | 10x-6+10x-6+10x-6=180 | | 13=g/9+5 | | 4h+2h+7=25 | | -5h+8=-6h | | m−–3=18 | | d4+ 12=16 |

Equations solver categories