If it's not what You are looking for type in the equation solver your own equation and let us solve it.
800/(x+2)+20=800/x
We move all terms to the left:
800/(x+2)+20-(800/x)=0
Domain of the equation: (x+2)!=0
We move all terms containing x to the left, all other terms to the right
x!=-2
x∈R
Domain of the equation: x)!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
800/(x+2)-(+800/x)+20=0
We get rid of parentheses
800/(x+2)-800/x+20=0
We calculate fractions
800x/(x^2+2x)+(-800x-1600)/(x^2+2x)+20=0
We multiply all the terms by the denominator
800x+(-800x-1600)+20*(x^2+2x)=0
We multiply parentheses
20x^2+800x+(-800x-1600)+40x=0
We get rid of parentheses
20x^2+800x-800x+40x-1600=0
We add all the numbers together, and all the variables
20x^2+40x-1600=0
a = 20; b = 40; c = -1600;
Δ = b2-4ac
Δ = 402-4·20·(-1600)
Δ = 129600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{129600}=360$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-360}{2*20}=\frac{-400}{40} =-10 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+360}{2*20}=\frac{320}{40} =8 $
| 65=x+(x*2)+(x | | -3(-9x+8)-6x=6(x-4)-6 | | 4z÷-12=-7 | | 4(u+3)=-2(8u-5)+8u | | 4w-8+2(2w+4)=-2(w+8) | | 2n-0.4=4n+1.2 | | 5x+5=43x+11 | | 3x-3+3=12-3 | | 10n^2-21n=1 | | 2x/44=15.5 | | 3x-3=12-3 | | 0.6x+0.72x=0 | | 1-3(2y-4)=7 | | 7x-x+6-6=x-x+30+6 | | (a-3)/5=a-8 | | X+55/11=8g | | 6x-6=x30 | | 6x-5=x+106x-x+5-5=x-x+10+55x/5=15/5X=3 | | 13y^2-18y-90=0 | | 3a+5=-5a-2 | | X+0.112x=180 | | 4+3n=n+6 | | 12x=-14/6 | | 9x²-3x+5x-5x²=x | | 6x-40=12-0,5x | | 2x○=12 | | 2x°=12 | | (2(x×x))=12 | | X=11+x/2 | | (2y)y-18=y(2y) | | 5+x=11× | | -1+5×=3+7x |