If it's not what You are looking for type in the equation solver your own equation and let us solve it.
80(x+20)x=180
We move all terms to the left:
80(x+20)x-(180)=0
We multiply parentheses
80x^2+1600x-180=0
a = 80; b = 1600; c = -180;
Δ = b2-4ac
Δ = 16002-4·80·(-180)
Δ = 2617600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2617600}=\sqrt{6400*409}=\sqrt{6400}*\sqrt{409}=80\sqrt{409}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1600)-80\sqrt{409}}{2*80}=\frac{-1600-80\sqrt{409}}{160} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1600)+80\sqrt{409}}{2*80}=\frac{-1600+80\sqrt{409}}{160} $
| 0.15(w+2)=0.3+0.2 | | 8(4+9z)=-17 | | 7-6y=3y*4-47 | | F(x)=3x2+1,G(x)=2x-3,H(x)=xG-1(x)= | | 3x-12+16=31 | | 4(7d+6)=17+9d | | 12n+6=28 | | 4.71=3.14a×1 | | 1/4x=1/8x | | 6/7x=14 | | X^2-14x-196=0 | | x/4-x/7=3 | | 25+2t=5(t+20 | | 24x−6−18x+4=21x−3−15x+14 | | 4(x0)=2x+6 | | -2/3x-7/4=-7/8 | | 8x+18=-70 | | 3x-1÷7=4-x | | 4(x=0)=2x+6 | | x-5/4=31/8 | | 4(x=0)=2x | | 4(8y-7)=2y+16 | | 1=v/2+7 | | 498-7)=2y+16 | | 240x=3600 | | d/2+5=4d+2 | | 2d+5=4d+2 | | 3600+60x=16800 | | (6u+4)^2-21=-39 | | 7y+4*8=8-5y+32 | | 80-x=40 | | 6c^2+20c+6=0 |