8/7x+5x=3x+19+9

Simple and best practice solution for 8/7x+5x=3x+19+9 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8/7x+5x=3x+19+9 equation:



8/7x+5x=3x+19+9
We move all terms to the left:
8/7x+5x-(3x+19+9)=0
Domain of the equation: 7x!=0
x!=0/7
x!=0
x∈R
We add all the numbers together, and all the variables
8/7x+5x-(3x+28)=0
We add all the numbers together, and all the variables
5x+8/7x-(3x+28)=0
We get rid of parentheses
5x+8/7x-3x-28=0
We multiply all the terms by the denominator
5x*7x-3x*7x-28*7x+8=0
Wy multiply elements
35x^2-21x^2-196x+8=0
We add all the numbers together, and all the variables
14x^2-196x+8=0
a = 14; b = -196; c = +8;
Δ = b2-4ac
Δ = -1962-4·14·8
Δ = 37968
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{37968}=\sqrt{16*2373}=\sqrt{16}*\sqrt{2373}=4\sqrt{2373}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-196)-4\sqrt{2373}}{2*14}=\frac{196-4\sqrt{2373}}{28} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-196)+4\sqrt{2373}}{2*14}=\frac{196+4\sqrt{2373}}{28} $

See similar equations:

| x^2-18=28 | | s^2=81s= | | 8=z-4/7 | | -90=2(3-6x) | | 117+3x=15 | | 1/2r+1/2r=r+1 | | 2s^2=18 | | 3x+6+x+3=4x+x+5+x | | a=5-6=4 | | 5x+10=-35-9 | | 11+3x=9+350x | | 10x-12+8x=12x+36 | | 36+10(n-4)=-24 | | 10-0.5x=0.3x+6.2 | | -3/5f=-17 | | x^+3x-60.75=0 | | 14+7/2r=-14 | | 10x+8=12x+16= | | 12(2x−12)+2x=12 | | –6d=–9−5d | | 14+6x+134=180 | | (h^2+M)=4N | | 287(x-6)= | | x2+3x-60.75=0 | | 14+6x+134=90 | | (10x-2)(6x-6)=0 | | 10x+4=60x=+2 | | 10x+8=5x-4= | | 5f-9=4f+5 | | 5x-3+5x-3=2x+15 | | w-3ww=2 | | 8x+4-6x=-10+28 |

Equations solver categories