If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8/3d+35=6/5d+46
We move all terms to the left:
8/3d+35-(6/5d+46)=0
Domain of the equation: 3d!=0
d!=0/3
d!=0
d∈R
Domain of the equation: 5d+46)!=0We get rid of parentheses
d∈R
8/3d-6/5d-46+35=0
We calculate fractions
40d/15d^2+(-18d)/15d^2-46+35=0
We add all the numbers together, and all the variables
40d/15d^2+(-18d)/15d^2-11=0
We multiply all the terms by the denominator
40d+(-18d)-11*15d^2=0
Wy multiply elements
-165d^2+40d+(-18d)=0
We get rid of parentheses
-165d^2+40d-18d=0
We add all the numbers together, and all the variables
-165d^2+22d=0
a = -165; b = 22; c = 0;
Δ = b2-4ac
Δ = 222-4·(-165)·0
Δ = 484
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{484}=22$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(22)-22}{2*-165}=\frac{-44}{-330} =2/15 $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(22)+22}{2*-165}=\frac{0}{-330} =0 $
| X+a/a1=1 | | p=1-(1+(0.075/12))^-12(20) | | (x+4)^2=5 | | 4n62n=2(n3) | | 22=9x+1-6 | | N^2+19n+88=0 | | 6x+3=-7+4x+14 | | 5/7(t+7)=-2/5t+23 | | 27=1/2h(8+1) | | 48+16t-16t^2=0 | | 2(3b+1)=2(2b+5) | | 3x-5=11x+7x | | -27=5v-8v | | 15-5y=2(4y+8) | | 0.02x^2+0.1-2=0 | | -4(v-8)=9v+6 | | x2−25⋅x+175=0 | | 5y-15=-5(y+1) | | -5(8+2s)=16 | | 0.5-30=1.1m | | 1/2h+2=17 | | -3(u-4)=2u-8 | | -33=6(4d+7) | | 6n=21-12n-15 | | -6n=21=12n-15 | | 2+5(1-4k)=-21 | | 2+5(1-4k)=-22 | | 7n+9-8=22 | | -3x+6=-8 | | 5x+14=2(2x+2) | | -8a-2a=24 | | 5x+14=2(2+2) |