8+7/8x=6+1/5x

Simple and best practice solution for 8+7/8x=6+1/5x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8+7/8x=6+1/5x equation:



8+7/8x=6+1/5x
We move all terms to the left:
8+7/8x-(6+1/5x)=0
Domain of the equation: 8x!=0
x!=0/8
x!=0
x∈R
Domain of the equation: 5x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
7/8x-(1/5x+6)+8=0
We get rid of parentheses
7/8x-1/5x-6+8=0
We calculate fractions
35x/40x^2+(-8x)/40x^2-6+8=0
We add all the numbers together, and all the variables
35x/40x^2+(-8x)/40x^2+2=0
We multiply all the terms by the denominator
35x+(-8x)+2*40x^2=0
Wy multiply elements
80x^2+35x+(-8x)=0
We get rid of parentheses
80x^2+35x-8x=0
We add all the numbers together, and all the variables
80x^2+27x=0
a = 80; b = 27; c = 0;
Δ = b2-4ac
Δ = 272-4·80·0
Δ = 729
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{729}=27$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(27)-27}{2*80}=\frac{-54}{160} =-27/80 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(27)+27}{2*80}=\frac{0}{160} =0 $

See similar equations:

| 10(4r+9)=65r-10+2-15r | | 5=d8 | | 10-7.2=x | | 84-x=179 | | 15x-7x=20+4 | | 12x+1=42x | | (x+14)=(3x-54) | | (x+3)2+7=23 | | 15-2(1-y)=2y-1 | | 6n+4-3n=16 | | 120°=6y° | | -1-6(5q-2)=-139 | | 1+8n+7n=16 | | 120°=6y | | 3x^2+6x-252=0 | | -2(2.5x+8)=26* | | 2−8/−3x=11 | | 7y-11=139 | | 5x=25+100 | | 1.6=0.2n+2.4 | | –6f=–4f+6 | | 80=3x+5) | | 5a-1+a=12 | | 5x-x+4x=9 | | F(2)=3x^2-15 | | 3(4v-5.)=-51 | | 4/8=c/8 | | -3(2c+4)=5(6-c) | | 9x-18=7(x-2) | | F(x)=3x-9x+12 | | 15+4n=39 | | 4(3d-2)=88d-5 |

Equations solver categories