8*4=x(x*7)-(x*3)

Simple and best practice solution for 8*4=x(x*7)-(x*3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8*4=x(x*7)-(x*3) equation:



8*4=x(x*7)-(x*3)
We move all terms to the left:
8*4-(x(x*7)-(x*3))=0
We add all the numbers together, and all the variables
-(x(+x*7)-(+x*3))+8*4=0
We add all the numbers together, and all the variables
-(x(+x*7)-(+x*3))+32=0
We calculate terms in parentheses: -(x(+x*7)-(+x*3)), so:
x(+x*7)-(+x*3)
We multiply parentheses
7x^2-(+x*3)
We get rid of parentheses
7x^2-x*3
Wy multiply elements
7x^2-3x
Back to the equation:
-(7x^2-3x)
We get rid of parentheses
-7x^2+3x+32=0
a = -7; b = 3; c = +32;
Δ = b2-4ac
Δ = 32-4·(-7)·32
Δ = 905
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{905}}{2*-7}=\frac{-3-\sqrt{905}}{-14} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{905}}{2*-7}=\frac{-3+\sqrt{905}}{-14} $

See similar equations:

| x+115=1 | | 7(6n-5)=-35+7n | | 92+(2x-30)=180 | | 73=-9y+1 | | 4x-1/x=5 | | 7(x+2)-4=x-5 | | 2(5x+7=34 | | -x+4=3×+4 | | 10=2(f−14) | | -6y+13+9y=8y-3+16y | | 2(v-5)-7v=30 | | 4(8-j)=2(j+8) | | 2a-7=31 | | (4x-25)/41=3 | | 4(8-j)=2(j+8 | | -1/3x+5=2x+9 | | 4(×-2)=4x+10 | | -8/5h=3 | | p-35=149 | | 5x12=-35 | | 5(2d-3)+6d+11+2d=180 | | 4(w+3)-6w=-2 | | -7x+12-8x+42=180 | | 5(y-2)-2=2(y-1)-5 | | 2m+10(m-2)=14 | | 28=6(u+7)-8u | | 5x^2=5184-x^2 | | 5=3p−13 | | 3(x-6)+3x=-30 | | 4k+16=0 | | 3x(x-6)+3x=-30 | | 2y-8.5=24 |

Equations solver categories