8(y+4)-2y(y-1)=70+-3y

Simple and best practice solution for 8(y+4)-2y(y-1)=70+-3y equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8(y+4)-2y(y-1)=70+-3y equation:



8(y+4)-2y(y-1)=70+-3y
We move all terms to the left:
8(y+4)-2y(y-1)-(70+-3y)=0
We add all the numbers together, and all the variables
8(y+4)-2y(y-1)-(-3y)=0
We multiply parentheses
-2y^2+8y+2y-(-3y)+32=0
We get rid of parentheses
-2y^2+8y+2y+3y+32=0
We add all the numbers together, and all the variables
-2y^2+13y+32=0
a = -2; b = 13; c = +32;
Δ = b2-4ac
Δ = 132-4·(-2)·32
Δ = 425
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{425}=\sqrt{25*17}=\sqrt{25}*\sqrt{17}=5\sqrt{17}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-5\sqrt{17}}{2*-2}=\frac{-13-5\sqrt{17}}{-4} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+5\sqrt{17}}{2*-2}=\frac{-13+5\sqrt{17}}{-4} $

See similar equations:

| 5x*2+97-10=194 | | (-5/7)x+(13/14)=-(1/2) | | 5–2(4x–3)=x–7 | | 10x-5=25x+10 | | 31+8.5x=150 | | -5x-240-4x=30 | | 140=4(x+15 | | 3y+1=4y6 | | 5v-14=3v | | x*x/x-1=2 | | X^2+25x-80=0 | | 3x+.5-13x=4-20x | | -5/7x+13/24=-1/2 | | 5x+8+9x+12=180 | | 4(2x-3)+15=21 | | 14x-13=9×+1 | | .8(20-x)=20 | | 2x+30+106=180 | | 13/5+1/3t=6 | | 8y-5(2+y)=2(y+1) | | X^2+25x-90=0 | | 30-17=x-6 | | 200x-x^2=15x+4000 | | 8y-5(2+y)=2(y+1 | | 4y–15=5 | | (4m-7)(m-7)=0 | | x^2-185x+4000=0 | | 4y–8=40 | | -118-2x+9x=36 | | (14x+70)=20x+8 | | 6×24-31=3y+1 | | -6-7(2x+1)=2-3(5x+1) |

Equations solver categories