If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8(u+8)8u=8
We move all terms to the left:
8(u+8)8u-(8)=0
We multiply parentheses
64u^2+512u-8=0
a = 64; b = 512; c = -8;
Δ = b2-4ac
Δ = 5122-4·64·(-8)
Δ = 264192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{264192}=\sqrt{1024*258}=\sqrt{1024}*\sqrt{258}=32\sqrt{258}$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(512)-32\sqrt{258}}{2*64}=\frac{-512-32\sqrt{258}}{128} $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(512)+32\sqrt{258}}{2*64}=\frac{-512+32\sqrt{258}}{128} $
| 2x+16=1+5x | | -2x=8; | | j3+ 9= 12 | | 2(3t-6)=3t-9 | | 85=w-20 | | 11x-1=6x-5+6x-5 | | 1+3s=7 | | 13m=-12 | | 8=3(b-5)+11 | | (5x-7)(5x+1)=0 | | 2(x+3)+12=10 | | 30b=-10 | | y/12+3=-9 | | 10=2b-4 | | 9/c2,c=31/2 | | 3t^2-5t-5=0 | | 15n-176=n(6-5) | | -3t^2+5t-5=0 | | (X-9)(x-11)=x | | 4n+147=n(4+147) | | 8(x+4)=4x-6=20 | | 3t^2+5t-5=0 | | 3k271/2,k=8 | | 21x3+7x-3,35=0 | | 4k+1.5=-8+4k | | 40n^2+48n+8=0 | | 281=74-v | | -4(3/2r-1/2)=-15 | | 6n^2-7n-20=0 | | P2+p-56=0 | | 2x+73-11=180 | | x=–4,3x+7=–5 |