If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8^2x-1=1/512
We move all terms to the left:
8^2x-1-(1/512)=0
We add all the numbers together, and all the variables
8^2x-1-(+1/512)=0
We get rid of parentheses
8^2x-1-1/512=0
We multiply all the terms by the denominator
8^2x*512-1-1*512=0
We add all the numbers together, and all the variables
8^2x*512-513=0
Wy multiply elements
4096x^2-513=0
a = 4096; b = 0; c = -513;
Δ = b2-4ac
Δ = 02-4·4096·(-513)
Δ = 8404992
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8404992}=\sqrt{147456*57}=\sqrt{147456}*\sqrt{57}=384\sqrt{57}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-384\sqrt{57}}{2*4096}=\frac{0-384\sqrt{57}}{8192} =-\frac{384\sqrt{57}}{8192} =-\frac{3\sqrt{57}}{64} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+384\sqrt{57}}{2*4096}=\frac{0+384\sqrt{57}}{8192} =\frac{384\sqrt{57}}{8192} =\frac{3\sqrt{57}}{64} $
| 1/4(x-1/4)=-29/16 | | 15z^2-46z+3=0 | | 21+8n=50-11n | | 1/5(10x+2)=-3(2x-4) | | (4x+8)*2=30 | | 1/4(x-1/4)=-26/19 | | 48=-4(-4p-7)-6(7p+1) | | 9.6x=(40)(48) | | n-(-18)=11 | | 9(y-2)=y-42 | | -222=-6(2+7x) | | .5x+5x=165 | | -260=-8+4(8p+1) | | -1+r=-4 | | -7m+18=15m+22 | | |2z+15|-5=3z | | 10w-5=56 | | 1/5(x-10)=-2/7(14-x) | | -7p-5(p+8)=-136 | | -8=n+(-11) | | -2+6(3p+1)=94 | | 4(6-x)=-3(x-4) | | 4(x+1)-2x=36 | | 4r+2(+)5r-12=125 | | 12x4=8x-8 | | 8-8(1+3x)=23- | | -7(8b-1)=287 | | 5n-13=3n+5n | | 176=n-7(5n+4) | | 3^6x−5=34 | | -w/3=-48 | | 12+18=8x+10 |