If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7y^2-14y=0
a = 7; b = -14; c = 0;
Δ = b2-4ac
Δ = -142-4·7·0
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-14}{2*7}=\frac{0}{14} =0 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+14}{2*7}=\frac{28}{14} =2 $
| 3x2-18x=-14 | | 3*(4-x)-5x=2*(x+1) | | (x*0.23)-x=10 | | x/4+21=9 | | 15x-3=-6 | | -11+x=1x+1 | | 144y^2-12y=0 | | .–3(4+m)=–36 | | H(a)=3-2aH(-3) | | 10.5=0.2b-25 | | 1071=21(p+15) | | 129x=4569 | | (-6)(5p)=150 | | 4x+83=25 | | 24x-16=48 | | 16=8+4b | | -2q=2q+4 | | 6x+4X+10x=260 | | 7x+42=91 | | 1/7x=66 | | 5+15+7+5x=47 | | −6=(n/−14)−5 | | 6x+45=81 | | 5(x-3)=6 | | 1/2=x=72 | | −6=n/−14−5 | | 1+1x6723562378-673=7123 | | 9x=19/2 | | 3x-5.5=6.5 | | –12/m = 4 | | -4m-4=-5m | | 4=y-22y=16=y |