If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7y-9/y=18
We move all terms to the left:
7y-9/y-(18)=0
Domain of the equation: y!=0We multiply all the terms by the denominator
y∈R
7y*y-18*y-9=0
We add all the numbers together, and all the variables
-18y+7y*y-9=0
Wy multiply elements
7y^2-18y-9=0
a = 7; b = -18; c = -9;
Δ = b2-4ac
Δ = -182-4·7·(-9)
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-24}{2*7}=\frac{-6}{14} =-3/7 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+24}{2*7}=\frac{42}{14} =3 $
| 5/4(8x-4)=4/3(6x-9) | | 5+2/3w=4 | | 14+5y=39 | | (5x+1)(-2x+5)=0 | | 4x^2-640X+6400=0 | | (3c^2)-2c-2=8 | | 6t+12=2t+36 | | 7(2e+3)-8=6e+29 | | (80-2x)(80-2X)X=0 | | 12m-6=10m | | 4(2x-3)=6x+12 | | 20x+15x=35x+12x | | x+16=123 | | Fx=5x-2 | | 7x^2+10x=1 | | 6u=-14 | | Y2+17y+144=y2+7y+184 | | Y2+17y+144=y2+7y+18= | | N+j+7=53 | | N+j-7=53 | | N+n-7=53 | | N+n+7=53 | | z/9-2=4 | | 5x^2-10x-50=29 | | 31=x÷5+6 | | 8x=8^2-9 | | x=8x-10 | | 6y^2-32y+96=0 | | 3-3(5m-6)=-24 | | 2(4x)-16=32 | | 10=-6+x/4 | | 5^(5x+5)=125^x |