Y2+17y+144=y2+7y+18=

Simple and best practice solution for Y2+17y+144=y2+7y+18= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for Y2+17y+144=y2+7y+18= equation:



2+17Y+144=Y2+7Y+18=
We move all terms to the left:
2+17Y+144-(Y2+7Y+18)=0
We add all the numbers together, and all the variables
-(+Y^2+7Y+18)+17Y+2+144=0
We add all the numbers together, and all the variables
-(+Y^2+7Y+18)+17Y+146=0
We get rid of parentheses
-Y^2-7Y+17Y-18+146=0
We add all the numbers together, and all the variables
-1Y^2+10Y+128=0
a = -1; b = 10; c = +128;
Δ = b2-4ac
Δ = 102-4·(-1)·128
Δ = 612
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{612}=\sqrt{36*17}=\sqrt{36}*\sqrt{17}=6\sqrt{17}$
$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-6\sqrt{17}}{2*-1}=\frac{-10-6\sqrt{17}}{-2} $
$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+6\sqrt{17}}{2*-1}=\frac{-10+6\sqrt{17}}{-2} $

See similar equations:

| N+j+7=53 | | N+j-7=53 | | N+n-7=53 | | N+n+7=53 | | z/9-2=4 | | 5x^2-10x-50=29 | | 31=x÷5+6 | | 8x=8^2-9 | | x=8x-10 | | 6y^2-32y+96=0 | | 3-3(5m-6)=-24 | | 2(4x)-16=32 | | 10=-6+x/4 | | 5^(5x+5)=125^x | | 4(2x+6)=5(3x+2) | | Xx8=304 | | -1+x/15=2 | | 3y+9=30;y | | x+5=6;x | | 3(2x+3)=4(x+2) | | 38+4x=86 | | 2(x-4)+1=x | | 16/2=7/2w | | 33+11x=143 | | 4+8(2x-3)-2(6x+0=0 | | -34-3x=-2x-51 | | (5k)(3k)=-4 | | 89=6x+23 | | 4x³-12x²=- | | -6k-2k=8 | | 4/5a=10 | | 60=7x-45 |

Equations solver categories