7y*(2y+6)=(7y+2y)+6

Simple and best practice solution for 7y*(2y+6)=(7y+2y)+6 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7y*(2y+6)=(7y+2y)+6 equation:



7y(2y+6)=(7y+2y)+6
We move all terms to the left:
7y(2y+6)-((7y+2y)+6)=0
We add all the numbers together, and all the variables
7y(2y+6)-((+9y)+6)=0
We multiply parentheses
14y^2+42y-((+9y)+6)=0
We calculate terms in parentheses: -((+9y)+6), so:
(+9y)+6
We get rid of parentheses
9y+6
Back to the equation:
-(9y+6)
We get rid of parentheses
14y^2+42y-9y-6=0
We add all the numbers together, and all the variables
14y^2+33y-6=0
a = 14; b = 33; c = -6;
Δ = b2-4ac
Δ = 332-4·14·(-6)
Δ = 1425
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1425}=\sqrt{25*57}=\sqrt{25}*\sqrt{57}=5\sqrt{57}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(33)-5\sqrt{57}}{2*14}=\frac{-33-5\sqrt{57}}{28} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(33)+5\sqrt{57}}{2*14}=\frac{-33+5\sqrt{57}}{28} $

See similar equations:

| −y2+4y+2=0 | | x^2-100x+576=0 | | -4y+9=18y-4 | | 2/3(12x-24)-11=-1/4(24x-12) | | -4q–8=-9–4q | | 15=(-15)-8u | | -1/2(x-1/9)=-1/6(x-1/8) | | 2n=2(2n)^2-5 | | 1/4=8^2x+5 | | 4(1-4n)=-32-7n | | 7(m-1)=4(3m+6) | | 5−2(4−s)=1+3(2−3s) | | 10/7=20/2x+1 | | 4x-18=2x-2 | | 16x^2+80x-96=0 | | )3k=−2(7+2k) | | 5(x+3)-8=3x+2(2+x) | | 2x-3=1-(3-3x) | | 2(2q-2)=3q+5 | | 0.5(x+5)+0.6(x+25)=23 | | 2c-5=4c-1 | | 2x-3=1-(3-3x | | 2x+1+x+7+x+3=16 | | 4-9(x-4)=6(4x-1)+5 | | k+5.5=8.5 | | 2(3x-7)+6=6x-8 | | 8-2(3-x)=16-(x+2) | | 3.1m−2.32=9.45 | | 9*x^2=81 | | 4n+7/3=5 | | (8m+2m)7-45=200 | | 29k-13+17k+18=7k+5 |

Equations solver categories