If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-8x-12=0
a = 7; b = -8; c = -12;
Δ = b2-4ac
Δ = -82-4·7·(-12)
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-20}{2*7}=\frac{-12}{14} =-6/7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+20}{2*7}=\frac{28}{14} =2 $
| 58=4(2w-5)=5w | | 23m=184 | | -2x+95=11x+131 | | 5x-83=72+10x | | a+97=689 | | 19+0.20m=4(31+0.85m) | | x^2+12x+14=-7 | | 7/2n=5/3 | | 41−n=16 | | 2x+5×+55=180 | | 12z-1+z2=35 | | 4x+84/3=0 | | 79+-5x=11x+127 | | 11x-2=110 | | d12=84 | | 5x+2=27+4x | | s8+ 84=89 | | 2(x-8)=x+6 | | 2e+3=25 | | 3(1+6k)=-(17-16k) | | x-3x=14-4x | | 3=2e=25 | | 10t=15+5(4t+11) | | 9x-5=15-1x | | p+-897=-434 | | 10k+60=12k+52 | | 31+0.85m=4(19+0.20m) | | n-5/8=9 | | -4-8(-s-18)=-11-6s-17 | | x/2+x/4+(x-100)=180 | | 223=6^x | | 223=6x |