If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12z-1+z2=35
We move all terms to the left:
12z-1+z2-(35)=0
We add all the numbers together, and all the variables
z^2+12z-36=0
a = 1; b = 12; c = -36;
Δ = b2-4ac
Δ = 122-4·1·(-36)
Δ = 288
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{288}=\sqrt{144*2}=\sqrt{144}*\sqrt{2}=12\sqrt{2}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-12\sqrt{2}}{2*1}=\frac{-12-12\sqrt{2}}{2} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+12\sqrt{2}}{2*1}=\frac{-12+12\sqrt{2}}{2} $
| 4x+84/3=0 | | 79+-5x=11x+127 | | 11x-2=110 | | d12=84 | | 5x+2=27+4x | | s8+ 84=89 | | 2(x-8)=x+6 | | 2e+3=25 | | 3(1+6k)=-(17-16k) | | x-3x=14-4x | | 3=2e=25 | | 10t=15+5(4t+11) | | 9x-5=15-1x | | p+-897=-434 | | 10k+60=12k+52 | | 31+0.85m=4(19+0.20m) | | n-5/8=9 | | -4-8(-s-18)=-11-6s-17 | | x/2+x/4+(x-100)=180 | | 223=6^x | | 223=6x | | -5(4-12u)=-4(-7u-11) | | -20j=-6-3(6j-14) | | 163=q-752 | | (2x-3)^2=4x−6 | | 5q=-325 | | 7.5x-10.2=x+3.42+9.6x | | 1x+2x+55=180 | | 31+.85m=4(19+.20m) | | 892=b-94 | | (2x-3)^2=4x-6(2x−3)2=4x−6 | | 1/4+x/3=-1/2 |