If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-36=4x^2
We move all terms to the left:
7x^2-36-(4x^2)=0
We add all the numbers together, and all the variables
3x^2-36=0
a = 3; b = 0; c = -36;
Δ = b2-4ac
Δ = 02-4·3·(-36)
Δ = 432
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{432}=\sqrt{144*3}=\sqrt{144}*\sqrt{3}=12\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{3}}{2*3}=\frac{0-12\sqrt{3}}{6} =-\frac{12\sqrt{3}}{6} =-2\sqrt{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{3}}{2*3}=\frac{0+12\sqrt{3}}{6} =\frac{12\sqrt{3}}{6} =2\sqrt{3} $
| 7x+35=-23 | | 2+5z=18+9z | | 6(-v+5)=-5(v-8) | | 0.25x-4=0.75x+5 | | 4x3-72=2x3 | | -7n-2n=-27 | | 60+40+2x-4=180 | | 7w=5·14 | | 0.25x+4=0.75+5 | | -8w=8w | | 20*h=42 | | x^2=2.1^2 | | 8x-10=8x+9 | | 11/t=100/10 | | 70-49=7x | | 0.25x+4=0.75x-5 | | x+2/3=1/9 | | 7p+13=22 | | 5x+2=-3x-6 | | 7+7(3-r)=-2(1-4r) | | 41x-3+40x=180 | | 3f+8=2(3f+4)-3f | | 25*n=57 | | -2x+3=−2x+3 | | 4(f+3)=4f-1 | | -4(-3v+4)-5v=3(v-9)-3 | | -8(x-4)=6(1-x) | | 1-2g=-3 | | 5x-10=9+8x | | 1-2g=3 | | x-5=11 12 | | -7+a=20 |