If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-20x-3=0
a = 7; b = -20; c = -3;
Δ = b2-4ac
Δ = -202-4·7·(-3)
Δ = 484
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{484}=22$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-22}{2*7}=\frac{-2}{14} =-1/7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+22}{2*7}=\frac{42}{14} =3 $
| 2(3x+4)+2x=4(x+1)-4 | | b+8=-9b-2 | | 24=5+j | | (6(4x+7))/4=0 | | |3d-9|=-6 | | 6g-g-2g-1=11 | | -12=8=4s | | 5j=24 | | 2b-8=-12 | | 13.56+7x=2126.3436125+x | | 6r^2=96 | | 8w-12=-4w | | 5h-4h-h+h=8 | | y(1-y)=-3(y-2) | | 6n+9+2n=-23/10 | | 3p-2p+p=-2p+3 | | 3b=81. | | 120=y+39 | | 17+2x=5(−x+5)−29 | | 2x+227+59=90 | | -8+7h=8h | | x3-7=10x | | 2x-227-59=90 | | (X/2)+(x+5)+x=100 | | 128=6x+86 | | 2x+227-59=180 | | 9y+4=7y-4 | | 3(x+2)+5=2x+44 | | 1/5a+8=9a | | 12x-5=-4x+3 | | 2x-227+59=180 | | 3x+5+7=45 |