If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-16x=0
a = 7; b = -16; c = 0;
Δ = b2-4ac
Δ = -162-4·7·0
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-16}{2*7}=\frac{0}{14} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+16}{2*7}=\frac{32}{14} =2+2/7 $
| x2-21x-130=0 | | (8x-4)(7x+6)=0 | | 83×(−212)=v | | 9x2+36x+5=0 | | x/456.3=16.5 | | 20/35=x/7 | | 2y+10=3y-20 | | (3x+1)(2x+1)(x+1)=0 | | 2(1+2x)+2x=-118 | | 1000(1-0.08)*(1+x-0.011)^5=1000(1+0.05)^5 | | 1/4-2x=2 | | 9/35=3/5t | | x2-12x+28=-8 | | x^2-12x+28=-8 | | 5=v+24/8 | | 4=7x+13 | | 2u/5=50 | | 3p-6=p-8,p= | | Y=3x/7+23/7 | | (x)(2x^2)=50 | | (z)^4=1 | | 7/9x+4/9x=1/4+5/12 | | I=10.5(y/4)+14.25y | | I=10.5(y/4) | | 10x^+30x+21=0 | | 10x^+30+21=0 | | /4x2-21x+20=0 | | 1x-2x=100 | | m^2–7=0 | | 35-u=276 | | -6j=-72 | | 139=202-v |