If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-14x=0
a = 7; b = -14; c = 0;
Δ = b2-4ac
Δ = -142-4·7·0
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-14}{2*7}=\frac{0}{14} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+14}{2*7}=\frac{28}{14} =2 $
| 21=41-3r | | ,4-(x+1)=6. | | -7n-5=30 | | x+x+2+5x=180 | | 2x+36+3x-5=180 | | 1/2(4x-10)+5=x-10 | | 2x+52=2x+232-2x+128 | | -1-9a=44 | | (2/3)(x-5)=1+(3/4)(2-3x) | | 54*0,8^-0,3x=102 | | 6v+10=28 | | 6j-j=7 | | x^2=-4x+192 | | 4y-5=39 | | 3x-4-16=x-8+8 | | 4z-z=15 | | 10=n+4+1 | | 54*0,8^0-3x=102 | | n/3+11=8 | | 6(x-1)+2(x+5)=25 | | -2=x= | | v/4-5=5 | | k-19=-18 | | 2(x+3)=5x+-3x | | 32=15z | | -18-6a=a-4(5+2a) | | x+77=234 | | -4=k+2k | | -17m=-340 | | -8a+5(-5+2a)=6a-13 | | 6-3x÷2=6 | | 8.2x=98.4 |