If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+x=20
We move all terms to the left:
7x^2+x-(20)=0
a = 7; b = 1; c = -20;
Δ = b2-4ac
Δ = 12-4·7·(-20)
Δ = 561
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{561}}{2*7}=\frac{-1-\sqrt{561}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{561}}{2*7}=\frac{-1+\sqrt{561}}{14} $
| -21=-(2x-3)-8(x+8) | | 16-8n=-5(+3n) | | 12.25+x-0.6=19.08 | | 5=20-v | | -5(1+2r)=4r+25 | | a+-15=4a+3 | | 12y+6=6(2y+3) | | -2(-4y+1)=8y-2 | | 14x+22=7x+27 | | 2(x+1)=-3(x+3) | | -8(2x+5)=-32-8x | | -43+x/4=-8 | | 1/3(x)-3=4-5/4(x) | | 2(d+5)+38(4d-2)+8=2d-1+7+10(2-d)+d | | 2(d+5)+38(4d-2)+8=2d-1+7+10(2d)+d | | 2x*1x=18 | | 3.7(-83x-3=3.7(7x-30) | | 2.1(2.3+2.1x)-x=11.65 | | 1,200-5(3x+30)=600 | | 11(v+3)-2v=3(3v+4)-21 | | -39+8b=-2-7(1-2b) | | 2d-1+7+10(2-d)+d=2(d+5)+3(4d-2)+8 | | 3(w+8)=-7(2w-6)+w | | 2(x+5)-3=-2x-1+1 | | -39+8b=-2-7(1-2b | | 3(y-1)=9y+9-4(-2y-1) | | 3/2-7/4v=9/8 | | 3y-3=17y+16 | | -x+100=5 | | -27+5b=8(8b+4) | | 1x*1/3x=96 | | 5/2x-3=7/3-2x+11/3x+5 |