If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+x-4=0
a = 7; b = 1; c = -4;
Δ = b2-4ac
Δ = 12-4·7·(-4)
Δ = 113
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{113}}{2*7}=\frac{-1-\sqrt{113}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{113}}{2*7}=\frac{-1+\sqrt{113}}{14} $
| 3(t-2)=9(t+2 | | z+50=(z+10)+4z | | 10-x/6=20 | | 4000=1/2*(1.156*10^11)*t^2 | | 14x+9x=-10 | | 360+4x=720 | | 10=s-9 | | 6x+16+290=360 | | 14x-9x=-10 | | 4a-16=4a | | -4x+2=2x-46 | | -21=3(3x+5) | | 4(2x-4)-2=5x+12 | | 4t-20=9t | | -x-17=3x-29 | | 5(x-2)+3=-x-31 | | 2(4x+3)+10=40 | | -3x+23=32 | | 8x-10=7x-16 | | x+21=-3x+33 | | 4x-13=2(5x+2)+1 | | 6x+28=5x+36 | | -1=2(x-4)+5 | | 5r+2=11(r-2) | | y+9/4=2 | | 5x+26=4(2x+1)-5 | | 18-5w=8 | | 14x+14=7x-14 | | 1p=0.5 | | 4x+4=-4x+84 | | 3(x-3)=6(x+3) | | 9/16=1/4x |