If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+63x=0
a = 7; b = 63; c = 0;
Δ = b2-4ac
Δ = 632-4·7·0
Δ = 3969
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3969}=63$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(63)-63}{2*7}=\frac{-126}{14} =-9 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(63)+63}{2*7}=\frac{0}{14} =0 $
| b+16=-22 | | 3(x+1)=8x-21 | | 99640-x=0.06x | | x+85=x+145 | | 3^(5x)=42 | | A(w)=900-17w | | (2a-4)=30 | | 24+2/9b=-5 | | 6-21y=-14 | | 3/7v-17=-18 | | 5.1+2.7=3.9d-2.7 | | 12-x^2=13 | | x+7-5x=31 | | 81+144=x^2 | | 12x^2-16x+15x=20 | | 5.1d+2.7=3.9-3.7 | | (x+37)(x+67)=x | | 2b+3b=8 | | n+n=2/5=14 | | C=2x22/7x98 | | 7x+7=8x+16 | | 4x+-10+2x-20=180 | | 12+3x=38 | | 4y+1+22y−1−53y−7=1047 | | x+2+3=3x-5 | | 5w−15=20 | | |x|+6=13 | | 18=3v-9 | | 9x2-10x=0 | | 3=66/u | | 2x+7+4=x+8 | | 27p-9p2=0 |