If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+3x=50
We move all terms to the left:
7x^2+3x-(50)=0
a = 7; b = 3; c = -50;
Δ = b2-4ac
Δ = 32-4·7·(-50)
Δ = 1409
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{1409}}{2*7}=\frac{-3-\sqrt{1409}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{1409}}{2*7}=\frac{-3+\sqrt{1409}}{14} $
| m−21=5 | | 400-6x=800-10x | | -9m+10=-7-m | | 9c+12=7c+9 | | 4(4-2x)=2(3-5x)+2x | | 7x+3x=(x=10)=5 | | –10w+17w+–10=11 | | y=372,000(1.05)^6 | | 11x-3(-3+x)=7x+8-2 | | 8n-4=52n= | | 8(5+4n)=(3=7n) | | 20.5=w/3600×703 | | 9=q−5 | | 0.05x=0.1(12+x) | | -1/2x-1/5=2/3 | | 106=(2x+6) | | 6y-8=5y+7 | | 83+39+y-39=180 | | 35u+33u+u+42=180 | | 8=8=1/4(5x-8) | | 3/4h=1464 | | 14^2-21x=0 | | x−6=−2 | | 13=13=8/3(4x+9) | | 6x-30/115=118 | | 4-3x+2+2x=-4(6x-4)+3(7x+2) | | 5/3b-5=20 | | 16=m+–2 | | 14x^2-(-21x)=0 | | 6-h=30 | | 75=(3x+12) | | –j=–12 |