7x2+26x+15=(x+)(x+)

Simple and best practice solution for 7x2+26x+15=(x+)(x+) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7x2+26x+15=(x+)(x+) equation:



7x^2+26x+15=(x+)(x+)
We move all terms to the left:
7x^2+26x+15-((x+)(x+))=0
We add all the numbers together, and all the variables
7x^2+26x-((+x)(+x))+15=0
We multiply parentheses ..
7x^2-((+x^2))+26x+15=0
We calculate terms in parentheses: -((+x^2)), so:
(+x^2)
We get rid of parentheses
x^2
Back to the equation:
-(x^2)
We add all the numbers together, and all the variables
6x^2+26x+15=0
a = 6; b = 26; c = +15;
Δ = b2-4ac
Δ = 262-4·6·15
Δ = 316
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{316}=\sqrt{4*79}=\sqrt{4}*\sqrt{79}=2\sqrt{79}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(26)-2\sqrt{79}}{2*6}=\frac{-26-2\sqrt{79}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(26)+2\sqrt{79}}{2*6}=\frac{-26+2\sqrt{79}}{12} $

See similar equations:

| 6x^2+5x+105=0 | | -14=-18-(3-4x) | | 1w=-4w+20 | | 2x-1=9x-15 | | 16+2x+12=10+8x+12 | | 10x+5=10x-5 | | 7*v+9/3=8 | | 2/3(x-4)-1/6=x/2+2 | | 2x-x=8+6 | | 2w^2=56-6 | | w(10w+1)=9 | | a-15=45 | | 3x+2(1/2x-4)=23 | | 5f+3=26 | | 3x+2(1/2-4)=23 | | 2-1/3y=5/9y+1/6 | | 3/y=11=y/2-3 | | 13/4+5/4x-1/2x=3x-7/2 | | 5x/5-5x/1=4 | | (y-3/5)=-4 | | -4r+6+6r=4+11r-9r-10 | | -4r+6+6r=4+11r-94-10 | | 105=5(5n-1) | | 15-x=2(x=3) | | 112+15m=382 | | 33n-176=352 | | 12x+3=2(x+2) | | q+14=8(q+70 | | 25n-126=224 | | 20=14+3(3=8)-7x-10-x)=-58 | | (2x10-4)(.81)= | | 4-(2x-1)=3(4x+1) |

Equations solver categories