If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+15x+6=0
a = 7; b = 15; c = +6;
Δ = b2-4ac
Δ = 152-4·7·6
Δ = 57
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-\sqrt{57}}{2*7}=\frac{-15-\sqrt{57}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+\sqrt{57}}{2*7}=\frac{-15+\sqrt{57}}{14} $
| x+9=12x-24 | | 8x-17=4x-3 | | 13x+3x2+14=0 | | 120=-15x | | 3(2x-5)-(4+x)=0 | | 3×(10-y)=7 | | 4-6x=65 | | -12x+4+9x2=0 | | -8+n=-23 | | 5x-14=2x=10 | | 4(6c-5)+5=3(4c-1) | | -22=1+8n+1 | | 16+3x2=8x | | 4x-4+7=-13 | | 12-1÷5r=2r×1 | | 45-b=4b-74 | | -6p+5p=8 | | (w+3)^2=2 | | 7-5=4-8x | | 14=1-7m-6m | | x2=-144 | | 6n^2+11n-6=0 | | 6y-8=-7(15-8y)+120 | | -8(4m+7)=168 | | 13-+4y=7 | | 3=2+m/4 | | 5x=4x=8 | | x/5+33=63 | | 100=81x2 | | n^2+19n-20=0 | | 64x2=1 | | 5x+28=3x+48 |