7x2+140=63x

Simple and best practice solution for 7x2+140=63x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7x2+140=63x equation:



7x^2+140=63x
We move all terms to the left:
7x^2+140-(63x)=0
a = 7; b = -63; c = +140;
Δ = b2-4ac
Δ = -632-4·7·140
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{49}=7$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-63)-7}{2*7}=\frac{56}{14} =4 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-63)+7}{2*7}=\frac{70}{14} =5 $

See similar equations:

| v2+6v=16 | | d.88=88.000 | | 10x-23=100 | | 10x-23=50 | | -12*c=12 | | y=70+14(70 | | 16-v=157 | | -v+46=260 | | 64=231-x | | -2=-v+7/6 | | b/5=61-6b | | 23*3+(3x)=114 | | 4/9(4x-1)-2/3(2x-1+x/3-(1/9(2x+8))=5/2 | | 4/9(4x-1)-2/3(2x-1+x/3-(1/9(2x+8))=0 | | x-43+x-39+2x-18=1180 | | 6x+19+x+3x+3=180 | | 23x+12x+5=180 | | -14m=-168 | | -4m=168 | | 240=-15w | | 8x-10=166 | | -12k=204 | | 5x+48=12x-15 | | 4y-2(y+1)=-10 | | 0.25*420=x | | 11/e=4 | | m+28=58 | | 55x-2x-4=x+7-5 | | 45x-7+2x=4x+5 | | 12x-7=-3 | | 7^(2n)=52^(4n+3) | | -(x-5)+-x=3 |

Equations solver categories