If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x+x(x+20)=180
We move all terms to the left:
7x+x(x+20)-(180)=0
We multiply parentheses
x^2+7x+20x-180=0
We add all the numbers together, and all the variables
x^2+27x-180=0
a = 1; b = 27; c = -180;
Δ = b2-4ac
Δ = 272-4·1·(-180)
Δ = 1449
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1449}=\sqrt{9*161}=\sqrt{9}*\sqrt{161}=3\sqrt{161}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(27)-3\sqrt{161}}{2*1}=\frac{-27-3\sqrt{161}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(27)+3\sqrt{161}}{2*1}=\frac{-27+3\sqrt{161}}{2} $
| 10x+5=5-14 | | 52+x/2=80 | | -4x+48=144 | | 52+(3x+50)=180 | | x+7=I2 | | 5b+0.75=100 | | 23x+28=-12x+98 | | 5+(3x+50)=180 | | b+0.75=1.00 | | -2(3x-10)=-16+6x | | 2h+–6=14 | | 1/7=2/9r | | (22/14)/(22/16)=x | | 10x=65-15 | | 18×8n=288 | | 240÷8=x | | 3/2q=5/4 | | 180=(15+x)+(75+x)+x | | q7=8 | | 2k=72 | | x+4=165 | | 1/9=2m | | 6.8.m=16.32 | | h=(1*16)/14 | | 1=z8−2 | | `x^{2}-6x+5=-2x+5` | | x-3.2=9.9 | | 1=z8-2 | | 1=z8− 2 | | 360=(6x+2)+(x-3)+(3x-5)+(2x+7)+(x+11) | | c+1.95=9 | | 1.6m-4.8m=1.6m |