If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x(x-9)=49
We move all terms to the left:
7x(x-9)-(49)=0
We multiply parentheses
7x^2-63x-49=0
a = 7; b = -63; c = -49;
Δ = b2-4ac
Δ = -632-4·7·(-49)
Δ = 5341
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5341}=\sqrt{49*109}=\sqrt{49}*\sqrt{109}=7\sqrt{109}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-63)-7\sqrt{109}}{2*7}=\frac{63-7\sqrt{109}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-63)+7\sqrt{109}}{2*7}=\frac{63+7\sqrt{109}}{14} $
| -3.6+w/6=-22.8 | | -5/3=-4/7x-5/2 | | 3k÷5=k+6 | | 2x^2/3=16 | | 39/x+6=2x-4/24 | | 6(n-3)=3n | | 0,5x=32 | | 5(3x+7)=8 | | 5(3x+7=8 | | 2x+17=22-4x | | 26-30x=0 | | r/6-38=21 | | t/13+5=18 | | 1.1^x+1.2^x=4 | | 3n2-0.75=90 | | -10.3=7.2+v/7 | | t/9-2=3 | | 2x2+12=62 | | 5x+5/3=7/3 | | 3(x-1)-2(2x+3)=2x(3-x)+2x-5x | | 25/4x=x/4 | | 6t^2+4t+4=0 | | 129=-16x^2+130x+3 | | 2(3x+4)=5 | | (x+8)+7=25 | | 11f-7=3f+33 | | 16/21=20/x | | 12/15=26/x | | 2t-7=7-2t | | 3x+x=3x+5 | | 4y+1=-1/3 | | 1/3+4y+1=0 |