If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x(5x+40)=0
We multiply parentheses
35x^2+280x=0
a = 35; b = 280; c = 0;
Δ = b2-4ac
Δ = 2802-4·35·0
Δ = 78400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{78400}=280$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(280)-280}{2*35}=\frac{-560}{70} =-8 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(280)+280}{2*35}=\frac{0}{70} =0 $
| 3.5x-2=3.5x+3.5 | | n=100+(-8)(n-1) | | (v+7)(v+6)=0 | | -1+2x=3x-4 | | 4=19x+ | | 3/8v=-18 | | 4x-11x-3=0 | | 3(b-5)=48 | | 4(8+5x6^2)=752 | | 7f+6=5f+17 | | 3/5x+24=x | | F(1/4)=24x+2x-4 | | A=m-7+(2.5-m) | | s/17=19 | | A=m-7+(2.5-m)= | | 3n-18=-27 | | 2(3n-9)=6(5-n) | | 2n(2n+5)=12 | | -45=w+15-16w | | -4=-6w | | G=-1+3a | | X=37.09+0.25x | | 0.16x-12=28 | | 16+2x=x+9+4x | | 3.2x7.6=24.32 | | 8m-18=21 | | 5/6-6w=1/3 | | d(3)=20 | | y/16=3/8 | | u/4=3/2 | | 3^2x-4^(3x+1)=-27 | | 40=3(5x) |