7x(4x+5)=6x(8x+-6)

Simple and best practice solution for 7x(4x+5)=6x(8x+-6) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7x(4x+5)=6x(8x+-6) equation:



7x(4x+5)=6x(8x+-6)
We move all terms to the left:
7x(4x+5)-(6x(8x+-6))=0
We add all the numbers together, and all the variables
7x(4x+5)-(6x(8x-6))=0
We multiply parentheses
28x^2+35x-(6x(8x-6))=0
We calculate terms in parentheses: -(6x(8x-6)), so:
6x(8x-6)
We multiply parentheses
48x^2-36x
Back to the equation:
-(48x^2-36x)
We get rid of parentheses
28x^2-48x^2+35x+36x=0
We add all the numbers together, and all the variables
-20x^2+71x=0
a = -20; b = 71; c = 0;
Δ = b2-4ac
Δ = 712-4·(-20)·0
Δ = 5041
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{5041}=71$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(71)-71}{2*-20}=\frac{-142}{-40} =3+11/20 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(71)+71}{2*-20}=\frac{0}{-40} =0 $

See similar equations:

| 9^x=4.3^x | | 0=-0.25t+4 | | 7x(4x+5)=6x-(8x+-6) | | 8y+8=7y+17 | | X=90=2x | | 10-(16/x)=6 | | 6(x-11)=+ | | (180-80-x)+(4x-30)=180 | | 6(x-11)=9 | | t=3/2=6 | | 3/8b=4 | | 10x-2x=8-3x | | 22x-6-16x+4=22x-5-16×+15 | | X^3+6x^2+7x=-42 | | (5/3)x=4 | | 22x-6-16x+4=22x-5-16x×15 | | (X-2)^2=11i | | 3y-26=5y | | 6y-4=4y-6 | | 5x+14-8x=19-19x+16x-5 | | 12+2x=44+x | | 2(6x+24)=2(7x+15) | | 3/4x-9=3-1/4x | | 5y-3=6+8y | | A(x)=-x^2+18x+144 | | 48x2-84x=0 | | 5.04=18y | | 3+7x-1=6x+26-2x | | 15/(x+2)-1=2 | | y=-4y+7 | | 1/5+3/7=2x | | 180=(3x-10)+(4x-20) |

Equations solver categories