If it's not what You are looking for type in the equation solver your own equation and let us solve it.
48x^2-84x=0
a = 48; b = -84; c = 0;
Δ = b2-4ac
Δ = -842-4·48·0
Δ = 7056
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{7056}=84$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-84)-84}{2*48}=\frac{0}{96} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-84)+84}{2*48}=\frac{168}{96} =1+3/4 $
| 5.04=18y | | 3+7x-1=6x+26-2x | | 15/(x+2)-1=2 | | y=-4y+7 | | 1/5+3/7=2x | | 180=(3x-10)+(4x-20) | | (a^2)-17a+60=0 | | 7p−2=6p+1 | | 5/35x-7/35=1 | | 3y+7=5y | | 8x+5x=20-10 | | -3-4-x=5-8x/4 | | 8x+5x=20 | | -3-4x=5-8x/4 | | 1/7x-1/5=1 | | -2x^2-6^2=0 | | x/15=3/128 | | -x=x-2 | | 34-12x=28 | | 34-12=28x-36 | | 3^x=5.2^x | | 3^x+5=2^x | | 1-x9x+31= | | (a^2)+23a+20=0 | | 3x-17+8x+10=180 | | (a^2)-3a-22=1 | | (a^2)-3a-22=0 | | (2x-3)÷5=7 | | 4t^2-60t+225=0 | | (a^2)-2a-67=0 | | N^2-n=40 | | x^{^2}-10X+22.5=0 |