If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7p^2-2=54p
We move all terms to the left:
7p^2-2-(54p)=0
a = 7; b = -54; c = -2;
Δ = b2-4ac
Δ = -542-4·7·(-2)
Δ = 2972
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2972}=\sqrt{4*743}=\sqrt{4}*\sqrt{743}=2\sqrt{743}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-54)-2\sqrt{743}}{2*7}=\frac{54-2\sqrt{743}}{14} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-54)+2\sqrt{743}}{2*7}=\frac{54+2\sqrt{743}}{14} $
| 175x-100x+48750=50250-175x | | -2/3=y+3/8 | | 7g=7/8 | | 7p2-2=54 | | x/87=150/100 | | 87/x=100/150 | | (-2x²)³=(-2)³(x²)³ | | x³+10x²+100=0 | | 87/100=x/150 | | 14=2b+b^2 | | 11x+8=-2+9 | | x^2+14x+48=100 | | 4x-5=20x+1 | | 3x+11/7+x+28/6=11 | | 12x(-7)=41 | | x2=7x+3 | | 3x^+6x=0 | | 3x-8=10x+20 | | 3a=5a-8/ | | 18y-22=48 | | 3a=5a-8/5 | | k+7=289 | | 16n=1004n+1= | | 7p/3+6=1 | | 320=-49t+9.8/2t² | | -4.9t²+49t+320=0 | | 8(2x+8)=112 | | 8(2x-8)=112 | | 20x²-15x-10=0 | | x*0.85=154.9 | | 3/4d+4=1/4d18 | | 12-5z=26 |